
Unit 1

Introduction to programming steps

An Overview of programming languages

A computer programming language is an intermediate for

communication with the system by a user.

A programming language is a vocabulary and set of

grammatical rules for instructing a computer or computing

device to perform specific tasks. The term programming

language usually refers to high-level languages, such

as BASIC, C, C++, COBOL, Java, FORTRAN, Ada,

and Pascal.

Each programming language has a unique set of keywords

(words that it understands) and a special syntax for

organizing

Programming languages are mainly classified in to three

categories.

 High level language

High level language like C,C++,JAVA,PHP etc. High-level

languages are designed to be used by the human operator or

the programmer. High level languages also require

translation to machine language before execution. The

translation of high level to machine level language is done by

either compiler or interpreter.

 Assembly language

An assembly language is a low-level programming language.

And used for microprocessors and other programmable

devices. It is also known as assembly code. This translation is

done by Assembler.

 Machine language

Machine language is a collection of binary digits or bits. The

computer reads and interprets it. This is the only language

computer can understand.

https://www.webopedia.com/TERM/C/computer.html
https://www.webopedia.com/TERM/H/high_level_language.html
https://www.webopedia.com/TERM/B/BASIC.html
https://www.webopedia.com/TERM/C/C.html
https://www.webopedia.com/TERM/C/C_plus_plus.html
https://www.webopedia.com/TERM/C/COBOL.html
https://www.webopedia.com/TERM/J/Java.html
https://www.webopedia.com/TERM/F/FORTRAN.html
https://www.webopedia.com/TERM/A/Ada.html
https://www.webopedia.com/TERM/P/Pascal.html
https://www.webopedia.com/TERM/S/syntax.html

What is computer program

computer program is a collection of instructions that can be

executed by a computer to perform a specific task. A computer

program is usually written by a computer programmer in

a programming language.

Compilation in programming

Compilation is the process the computer takes to convert a high-

level programming language into a machine language that the

computer can understand. The software which performs this

conversion is called a compiler.

What is a compiler

A compiler is a translator which converts high level computer

language programs in to its equivalent machine form (binary

form)

A compiler is a translator which converts source code(human

understandable form) in to object code (machine understandable

form).

Linking and loading in programming

The key difference between linking and loading is that

the linking generates the executable file of a program whereas,

the loading loads the executable file obtained from

the linking into main memory for execution.

Linking

Linking is the process of collecting and combining various pieces

of code and data into a single file that can be loaded (copied) into

memory and executed. .

Loading

Loading a program involves reading the contents of the

executable file containing the program instructions into memory,

and then carrying out other required preparatory tasks to

prepare the executable for running.

Testing and Debugging in programming

Testing is a process of finding bugs or errors in a software

product that is done manually by tester or can be

automated. Debugging is a process of fixing the bugs found

in testing phase. Programmer or developer is responsible

for debugging and it can't be automated

Testing

Testing is a process of executing a program with the aim of

finding error. To make our software perform well it should be

error free. If testing is done successfully it will remove all the

errors from the software.

Debugging

Debugging is the routine process of locating and removing

computer program bugs, errors , which is methodically handled

by software programmers via debugging tools. Debugging checks,

detects and corrects errors or bugs to allow proper program

operation according to set specifications.

Documentation

Software documentation is written text or illustration that

accompanies computer software or is embedded in the source

code. The documentation either explains how the software

operates or how to use it, and may mean different things to people

in different roles.

Unit Two

Character set

Like every other language 'C' also has its own character set. A

program is a set of instructions that when executed, generate an

output. The data that is processed by a program consists of various

characters and symbols. The output generated is also a combination of

characters and symbols.

Character set in programming language C includes letters from a

to z (A to Z) , numbers from 0 to 9 ,special symbols like

@,#,&,*,”,',:,;,!,?. and white space (tab,newline,space).

Upper case letters A-Z

Lower case letters a_z

Numbers from 0-9

Special symbols like @, *,”,',:,; ,! ,,? +_-

White space like tab, new line, space.

C language support 256 characters

Variables and Identifiers

Variables

 a variable is a name given to a memory location, that is used to hold

a value. Variable is only a kind of identifier. A variable must be

declared first before it is used somewhere inside the program. A

variable name is formed using characters, digits and an underscore.

Identifier

An identifier is nothing but a name assigned to an element in a

program. Example, name of a variable, function, etc.

In C language identifiers are the names given to variables, constants,

functions and user-define data.The identifier is only used to identify

an entity uniquely in a program at the time of execution. An Indetifier

can only have alphanumeric characters(a-z , A-Z , 0-9) and

underscore(_).

Keywords
Keywords are preserved words that have special meaning in C

language. The meaning has already been described. These meaning

cannot be changed. There are total 32 keywords in C language.

In 'C' every word can be either a keyword or an identifier.

Keywords have fixed meanings, and the meaning cannot be changed.

They act as a building block of a 'C' program. There are total 32

keywords in 'C'. Keywords are written in lowercase letters.

Following table represents the keywords in 'C',

auto double int struct

break else long switch

case enum register typedef

char extern return union

const short float unsigned

continue for signed void

default goto sizeof volatile

do if static while

 Token in C

TOKEN is the smallest unit in a 'C' program. It is each and every

word and punctuation that you come across in your C program. The

compiler breaks a program into the smallest possible units (tokens)

and proceeds to the various stages of the compilation. A token is

divided into six different types, viz, Keywords, Operators, Strings,

Constants, Special Characters, and Identifiers.

Tokens in C

Data types

'C' provides various data types to make it easy for a programmer to

select a suitable data type as per the requirements of an application.

Following are the three data types:

1. Primitive data types

2. Derived data types

3. User-defined data types

There are five primary fundamental data types,

1. int for integer data

2. char for character data

https://www.guru99.com/images/1/020819_0433_CTokensKeyw1.png

3. float for floating point numbers

4. double for double precision floating point numbers

5. void

Array, functions, pointers, structures are derived data types. 'C'

language provides more extended versions of the above mentioned

primary data types. Each data type differs from one another in size

and range. Following table displays the size and range of each data

type.

Data type Size

in

bytes

Range

Char or

signed

char

1 -128 to 127

Unsigned

char

1 0 to 255

int or

signed int

2 -32768 to

32767

Unsigned

int

2 0 to 65535

Short int

or

Unsigned

short int

2 0 to 255

Signed 2 -128 to 127

short int

Long int or

Signed

long int

4 -2147483648

to

2147483647

Unsigned

long int

4 0 to

4294967295

float 4 3.4E-38 to

3.4E+38

double 8 1.7E-308 to

1.7E+308

Long

double

10 3.4E-4932 to

1.1E+4932

Integer data type

Integer is nothing but a whole number. The range for an integer data

type varies from machine to machine. The standard range for an

integer data type is -32768 to 32767. An integer typically is of 2 bytes

which means it consumes a total of 16 bits in memory.

Whenever we want to use an integer data type, we have place int

before the identifier such as,

int age;

Here, age is a variable of an integer data type which can be used to

store integer values.

Floating point data type

Like integers, in 'C' program we can also make use of floating point

data types. The 'float' keyword is used to represent the floating point

data type. It can hold a floating point value which means a number is

having a fraction and a decimal part. A floating point value is a real

number that contains a decimal point. The data type double and long

double are used to store real numbers with precision up to 14 and 80

bits respectively.

While using a floating point number a keyword float/double/long

double must be placed before an identifier. The valid examples are,

float division;

double BankBalance;

Character data type

Character data types are used to store a single character value

enclosed in single quotes.

A character data type takes up-to 1 byte of memory space.

Example,

Char letter;

Void data type

A void data type doesn't contain or return any value. It is mostly used

for defining functions in 'C'.

Example,

void displayData()

Constants

Constants are the fixed values that never change during the execution

of a program. Following are the various types of constants:

Integer constants

An integer constant is nothing but a value consisting of digits or

numbers. These values never change during the execution of a

program. Integer constants can be octal, decimal and hexadecimal.

1. Decimal constant contains digits from 0-9 such as,

Example, 111, 1234

Above are the valid decimal constants.

2. Octal constant contains digits from 0-7, and these types of

constants are always preceded by 0.

Example, 012, 065

Above are the valid decimal constants.

3. Hexadecimal constant contains a digit from 0-9 as well as

characters from A-F. Hexadecimal constants are always

preceded by 0X.

Example, 0X2, 0Xbcd

Above are the valid hexadecimal constants.

The octal and hexadecimal integer constants are very rarely used in

programming with 'C'.

Character constants

A character constant contains only a single character enclosed within

a single quote (''). We can also represent character constant by

providing ASCII value of it.

Example, 'A', '9'

Above are the examples of valid character constants.

String constants

A string constant contains a sequence of characters enclosed within

double quotes ("").

Example, "Hello", "Programming"

These are the examples of valid string constants.

Real Constants

Like integer constants that always contains an integer value. 'C' also

provides real constants that contain a decimal point or a fraction

value. The real constants are also called as floating point constants.

The real constant contains a decimal point and a fractional value.

Example, 202.15, 300.00

These are the valid real constants in 'C'.

A real constant can also be written as,

Mantissa e Exponent

Summary

 A constant is a value that doesn't change throughout the

execution of a program.

 A token is the smallest unit in a program.

 A keyword is reserved words by language.

 There are total 32 keywords.

 An identifier is used to identify elements of a program.

 A variable is an identifier which is used to store a value.

 There are four commonly used data types such as int, float, char

and a void.

 Each data type differs in size and range from one another.

Arithmetic Operators. C programming language provides all

basic arithmetic operators: +(addition), -(subtraction),

*(multiplication), /(division) and % (Modulus).

The Arithmetic operators are some of

the C Programming Operator, which are used to

perform arithmetic operations includes operators like Addition,

Subtraction, Multiplication, Division and Modulus.

Expression in C

An expression is a combination of variables constants and

operators written according to the syntax of C language.

In C every expression evaluates to a value .

Operators, functions, constants and variables are combined

together to form expressions. Consider the expression

 A + B * 5.

A+B=C

There are three kinds of expressions:

 An arithmetic expression evaluates to a single arithmetic value.

 A character expression evaluates to a single value of type character.

 A logical or relational expression evaluates to a single logical value.

Simple assignment statement

C provides an assignment operator for this purpose, assigning the

value to a variable using assignment operator is known as

an assignment statement in C. The function of this operator is

to assign the values or values in variables on right hand side of an

expression to variables on the left hand side.

= is the assignment operator

A=5

Here the value 5 is assigned to the variable A

Basic Input Output Statement

An input/output statement or IO statement is a portion of a

program that instructs a computer how to read and process

information. It is to gather information from an input device, or

sending information to an output device. Input, Output,

Programming terms.

Input means to provide the program with some data to be used in

the program and Output means to display data on screen or write

the data to a printer or a file.

scanf() and printf() functions

The standard input-output header file, named stdio.h contains the

definition of the functions printf() and scanf(), which are used to

display output on screen and to take input from user respectively.

printf("Please enter a value...");

 scanf("%d", &i);

%d inside the scanf() or printf() functions known as format

string and this informs the scanf() function, what type of input to

expect.

Format

String

Meaning

%d Scan or print an integer as

signed decimal number

%f Scan or print a floating

point number

%c To scan or print a character

%s To scan or print a character

string. The scanning ends

at whitespace

Unit Three

Decision Making within a Program

Decision making is about deciding the order of execution of

statements based on certain conditions or repeat a group of statements

until certain specified conditions are met. C language handles

decision-making by supporting the following statements,

 if statement

 switch statement

 conditional operator statement (? : operator)

 goto statement

Decision making with if statement

The if statement may be implemented in different forms depending on

the complexity of conditions to be tested. The different forms are,

1. Simple if statement

2. if....else statement

3. Nested if....else statement

4. Using else if ladder statement

Simple if statement

The general form of a simple if statement is,

if(expression)

{

 statement inside;

}

 statement outside;

If the expression returns true, then the statement-inside will be

executed, otherwise statement-inside is skipped and only

the statement-outside is executed.

Example:

#include <stdio.h>

void main()

{

 int x, y;

 x = 15;

 y = 13;

 if (x > y)

 {

 printf("x is greater than y");

 }

}

x is greater than y

if...else statement

The general form of a simple if...else statement is,

if(expression)

{

 statement block1;

}

else

{

 statement block2;

}

If the expression is true, the statement-block1 is executed,

else statement-block1 is skipped and statement-block2 is executed.

Example:

#include <stdio.h>

void main()

{

 int x, y;

 x = 15;

 y = 18;

 if (x > y)

 {

 printf("x is greater than y");

 }

 else

 {

 printf("y is greater than x");

 }

}

y is greater than x

Nested if....else statement

The general form of a nested if...else statement is,

if(expression)

{

 if(expression1)

 {

 statement block1;

 }

 else

 {

 statement block2;

 }

}

else

{

 statement block3;

}

if expression is false then statement-block3 will be executed,

otherwise the execution continues and enters inside the first if to

perform the check for the next if block, where if expression 1 is true

the statement-block1 is executed otherwise statement-block2 is

executed.

Example:

#include <stdio.h>

void main()

{

 int a, b, c;

 printf("Enter 3 numbers...");

 scanf("%d%d%d",&a, &b, &c);

 if(a > b)

 {

 if(a > c)

 {

 printf("a is the greatest");

 }

 else

 {

 printf("c is the greatest");

 }

 }

 else

 {

 if(b > c)

 {

 printf("b is the greatest");

 }

 else

 {

 printf("c is the greatest");

 }

 }

}

else if ladder

The general form of else-if ladder is,

if(expression1)

{

 statement block1;

}

else if(expression2)

{

 statement block2;

}

else if(expression3)

{

 statement block3;

}

else

 default statement;

The expression is tested from the top(of the ladder) downwards. As

soon as a true condition is found, the statement associated with it is

executed.

Example :

#include <stdio.h>

void main()

{

 int a;

 printf("Enter a number...");

 scanf("%d", &a);

 if(a%5 == 0 && a%8 == 0)

 {

 printf("Divisible by both 5 and 8");

 }

 else if(a%8 == 0)

 {

 printf("Divisible by 8");

 }

 else if(a%5 == 0)

 {

 printf("Divisible by 5");

 }

 else

 {

 printf("Divisible by none");

 }

}

Switch statement in C

When you want to solve multiple option type problems, for example:

Menu like program, where one value is associated with each option

and you need to choose only one at a time, then, switch statement is

used.

Switch statement is a control statement that allows us to choose only

one choice among the many given choices. The expression

in switch evaluates to return an integral value, which is then

compared to the values present in different cases. It executes that

block of code which matches the case value. If there is no match,

then default block is executed(if present). The general form

of switch statement is,

switch(expression)

{

 case value-1:

 block-1;

 break;

 case value-2:

 block-2;

 break;

 case value-3:

 block-3;

 break;

 case value-4:

 block-4;

 break;

 default:

 default-block;

 break;

}

break statements are used to exit the switch block.

The conditional operator (? : Operator)

 which can be used to replace if...else statements. It has the following

general form −

Exp1 ? Exp2 : Exp3;

Where Exp1, Exp2, and Exp3 are expressions. Notice the use and

placement of the colon.

The value of a ? expression is determined like this −

 Exp1 is evaluated. If it is true, then Exp2 is evaluated and

becomes the value of the entire ? expression.

 If Exp1 is false, then Exp3 is evaluated and its value becomes

the value of the expression.

The goto statement

goto' Statement in C language

 goto is a jumping statement in c language, which transfer

the program's control from one statement to another statement

(where label is defined).

 goto can transfer the program's within the same block and there

must a label, where you want to transfer program's control.

 Program’s control can be transfer following by the given syntax

 goto label_name;

Arithmetic Operators

The following table shows all the arithmetic operators supported by

the C language. Assume variable A holds 10 and variable B holds 20

then

Show Examples

Operator Description Example

+ Adds two

operands.

A + B =

30

− Subtracts

second

operand from

the first.

A − B =

-10

* Multiplies

both

operands.

A * B =

200

/ Divides

numerator by

de-

numerator.

B / A = 2

% Modulus

Operator and

remainder of

after an

integer

division.

B % A =

0

++ Increment

operator

increases the

integer value

A++ =

11

https://www.tutorialspoint.com/cprogramming/c_arithmetic_operators.htm

by one.

-- Decrement

operator

decreases the

integer value

by one.

A-- = 9

Relational Operators

The following table shows all the relational operators supported by

C. Assume variable A holds 10 and variable B holds 20 then −

Show Examples

Operator Description Example

== Checks if the

values of two

operands are

equal or not.

If yes, then

the condition

becomes

true.

(A == B)

is not

true.

!= Checks if the

values of two

operands are

equal or not.

If the values

are not equal,

then the

condition

(A != B)

is true.

https://www.tutorialspoint.com/cprogramming/c_relational_operators.htm

becomes

true.

> Checks if the

value of left

operand is

greater than

the value of

right

operand. If

yes, then the

condition

becomes

true.

(A > B)

is not

true.

< Checks if the

value of left

operand is

less than the

value of right

operand. If

yes, then the

condition

becomes

true.

(A < B)

is true.

>= Checks if the

value of left

operand is

greater than

or equal to

the value of

right

(A >= B)

is not

true.

operand. If

yes, then the

condition

becomes

true.

<= Checks if the

value of left

operand is

less than or

equal to the

value of right

operand. If

yes, then the

condition

becomes

true.

(A <= B)

is true.

Logical Operators

Following table shows all the logical operators supported by C

language. Assume variable A holds 1 and variable B holds 0, then −

Show Examples

Operator Description Example

&& Called

Logical AND

operator. If

both the

operands are

non-zero,

then the

condition

(A &&

B) is

false.

https://www.tutorialspoint.com/cprogramming/c_logical_operators.htm

becomes

true.

|| Called

Logical OR

Operator. If

any of the

two operands

is non-zero,

then the

condition

becomes

true.

(A || B)

is true.

! Called

Logical NOT

Operator. It

is used to

reverse the

logical state

of its

operand. If a

condition is

true, then

Logical NOT

operator will

make it false.

!(A &&

B) is

true.

Loops in C

Loops are control structures used to repeat a given section of code a

certain number of times or until a particular condition is met.

Looping is one of the key concepts on any programming language. It

executes a block of statements number of times until the condition

becomes false. Loops are of 2 types: entry-controlled and exit-

controlled.

C programming has three types of loops:

1. for loop

2. while loop

3. do...while loop

While Loop

A while loop is the most straightforward looping structure. The basic

format of while loop is as follows:

while (condition) {

 statements;

}

It is an entry-controlled loop. In while loop, a condition is evaluated

before processing a body of the loop. If a condition is true then and

only then the body of a loop is executed. After the body of a loop is

executed then control again goes back at the beginning, and the

condition is checked if it is true, the same process is executed until the

condition becomes false. Once the condition becomes false, the

control goes out of the loop.

Do-While loop

A do-while loop is similar to the while loop except that the condition

is always executed after the body of a loop. It is also called an exit-

controlled loop.

The basic format of do- while loop is as follows:

 do {

 statements

} while (expression);

In the do-while loop, the body of a loop is always executed at least

once. After the body is executed, then it checks the condition. If the

condition is true, then it will again execute the body of a loop

otherwise control is transferred out of the loop. programming

language provides the following types of loops to handle looping

requirements.

For loop

A for loop is a more efficient loop structure in 'C' programming. The

general structure of for loop is as follows:

for (initial value; condition; incrementation or decrementation)

{

 statements;

}

 The initial value of the for loop is performed only once.

 The condition is a Boolean expression that tests and compares

the counter to a fixed value after each iteration, stopping the for

loop when false is returned.

 The incrementation/decrementation increases (or decreases) the

counter by a set value.

Summary

 Looping is one of the key concepts on any programming

language.

 It executes a block of statements number of times until the

condition becomes false.

 Loops are of 2 types: entry-controlled and exit-controlled.

 'C' programming provides us 1) while 2) do-while and 3) for

loop.

 For and while loop is entry-controlled loops.

 Do-while is an exit-controlled loop.

Sl.No. Loop Type & Description

1 while loop

Repeats a statement or

group of statements while a

given condition is true. It

tests the condition before

executing the loop body.

2 for loop

Executes a sequence of

statements multiple times

and abbreviates the code

that manages the loop

variable.

3 do...while loop

It is more like a while

https://www.tutorialspoint.com/cprogramming/c_while_loop.htm
https://www.tutorialspoint.com/cprogramming/c_for_loop.htm
https://www.tutorialspoint.com/cprogramming/c_do_while_loop.htm

statement, except that it

tests the condition at the

end of the loop body.

4 nested loops

You can use one or more

loops inside any other

while, for, or do..while

loop.

Loop Control Statements

Loop control statements change execution from its normal sequence.

When execution leaves a scope, all automatic objects that were

created in that scope are destroyed.

C supports the following control statements.

Sr.No. Control Statement &

Description

1 break statement

Terminates

the loop or switch statement

and transfers execution to

the statement immediately

following the loop or

switch.

2 continue statement

Causes the loop to skip the

remainder of its body and

immediately retest its

condition prior to

reiterating.

https://www.tutorialspoint.com/cprogramming/c_nested_loops.htm
https://www.tutorialspoint.com/cprogramming/c_break_statement.htm
https://www.tutorialspoint.com/cprogramming/c_continue_statement.htm

3 goto statement

Transfers control to the

labeled statement.

The Infinite Loop

A loop becomes an infinite loop if a condition never becomes false.

The for loop is traditionally used for this purpose. Since none of the

three expressions that form the 'for' loop are required, you can make

an endless loop by leaving the conditional expression empty.

#include <stdio.h>

int main () {

 for(; ;) {

 printf("This loop will run forever.\n");

 }

 return 0;

}

When the conditional expression is absent, it is assumed to be true.

You may have an initialization and increment expression, but C

programmers more commonly use the for(;;) construct to signify an

infinite loop.

NOTE − You can terminate an infinite loop by pressing Ctrl + C

keys.

Nested loops

Nested loop means a loop statement inside another loop statement.

That is why nested loops are also called as “loop inside loop.

The placing of one loop inside the body of another loop is

called nesting. When you "nest" two loops, the outer loop takes

control of the number of complete repetitions of the inner loop. While

https://www.tutorialspoint.com/cprogramming/c_goto_statement.htm

all types of loops may be nested, the most commonly nested

loops are for loops.

Structured Programming in C

Structured Programming. C is called a structured

programming language because to solve a large problem, C

programming language divides the problem into smaller structural

blocks each of which handles a particular responsibility.

Why C is a structured programming language?

C is called structured programming language because a program

in c language can be divided into small logical functional modules or

structures with the help of function procedure. C is high

level programming language, so easy to understand and write a

program

Using structured programming languages have the following

advantages.

 Programs are easier to read and understand.

 Application programs are less likely to contain logic errors.

 Errors are more easily found.

 Higher productivity during application program development.

 Application programs are more easily maintained.

UNIT FOUR

Arrays

 An array is a collection of data items, all of the same type, accessed

using a common name.

 A one-dimensional array is like a list; A two dimensional array is

like a table;

 An array can be of any type, For example: int , float , char etc.

Declaration of an array

Arrays a kind of data structure that can store a fixed-size sequential

collection of elements of the same type. An array is used to store a

collection of data, but it is often more useful to think of an array as a

collection of variables of the same type. ... A specific element in

an array is accessed by an index.

All arrays consist of contiguous memory locations. The lowest

address corresponds to the first element and the highest address to

the last element.

 To declare an array in C, a programmer specifies the type of the

elements and the number of elements required by an array as follows

data type array_name [array_size];

eg:

int number [5]; declared an integer array of name number and of

size 5

Char nam[10]; declared a character array of name nam and of size 10

float total [20]; declared a floating point array of name total and of

size 2

Using Arrays

 Elements of an array are accessed by specifying the index (

offset) of the desired element within square [] brackets after the

array name.

 Array subscripts must be of integer type. (int, long int, char,

etc.)

 VERY IMPORTANT: Array indices start at zero in C, and go

to one less than the size of the array. For example, a five

element array will have indices zero through four

Initialization of an array

Declaration and assigning values to an array is called an array

initialization

Data type array_name[array_size]={elements};

Int num[5]={10,20,30,40,50};

One dimensional array

A one-dimensional array is a structured collection of components

(often called array elements) that can be accessed individually by

specifying the position of a component with a single index value.

Eg:

int number[5];

float total[10];

char name[7];

Array manipulation

Searching an element in an array

Searching is the process of finding a given value position in a list of

values. It decides whether a search key is present in the data or not. It

is the algorithmic process of finding a particular item in a collection

of items.

to search an element in a given array, there are two

popular algorithms available: Linear Search. Binary Search.

Insertion Operation in Array.

 Insertion operation is used to insert a new element at specific

position in to one dimensional array. In order to insert a new element

into one dimensional array we have to create space for new element.

... We have to move last N-1 elements down in order to create space

for the new element.

Or

Insertion Operation. Insert operation is to insert one or

more data elements into an array. Based on the requirement, new

element can be added at the beginning, end or any given index of

array.

Deletion Operation in an array.

Deletion refers to removing an existing element from the array and

re-organizing all elements of an array.

This operation is used to delete an element from specific position

from one dimensional array.

In order to delete an element from one dimensional array first we

have to delete element from specified position and then shift

remaining elements upwards to take vacant space of the deleted

element.

Finding the largest/smallest element in an array

Algorithm to find the smallest and largest numbers in an array

 Input the array elements.

 Initialize small = large = arr[0]

 Repeat from i = 2 to n.

 if(arr[i] > large)

 large = arr[i]

 if(arr[i] < small)

 small = arr[i]

 Print small and large.

Two dimensional arrays

Two Dimensional Array in C. The two-dimensional array can be

defined as an array of arrays. The 2D array is organized as matrices

which can be represented as the collection of rows and columns.

 2D arrays are generally known as matrix

The syntax to declare the 2D array is given below

data_type array_name[rows][columns];

eg: int abc[4][3];

Here, 4 is the number of rows, and 3 is the number of columns.

Initialization of 2D array

int arr[4][3]={{1,2,3},{2,3,4},{3,4,5},{4,5,6}};

Addition/multiplication of two matrices

Addition of two matrices

Add the values of the two matrixes and store it in another matrix.

Display the new matrix.

Algorithm to add two matrices

 Input matrix 1 and matrix 2.

 If the number of rows and number of columns of matrix 1 and

matrix 2 is equal,

 for i=1 to rows[matrix 1]

 for j=1 to columns [matrix 1]

 Input matrix 1 [i,j]

 Input matrix 2 [i,j]

 matrix 3 [i,j]= matrix 1 [i,j]+ matrix 2 [i,j];

 Display matrix 3 [i,j];

Multiplication of two Matrices

Matrix multiplication in C language to calculate the product of two

matrices (two-dimensional arrays). A user inputs the orders and

elements of the matrices. If the multiplication isn't possible, an error

message is displayed.

Matrix Multiplication Algorithm:

 Start

 Declare variables and initialize necessary variables

 Enter the element of matrices by row wise using loops

 Check the number of rows and column of first and second

matrices

 If number of rows of first matrix is equal to the number of

columns of second matrix, go to step 6. Otherwise, print

matrix multiplication is not possible and go to step 3.

 Multiply the matrices using nested loops.

 Print the product in matrix form as console output.

 Stop

Null terminated string as array of characters

In computer programming, a null-terminated string is a character

string stored as an array containing

the characters and terminated with a null character ('\0' , called

NUL in ASCII).

Null-terminated strings

So it is an array of characters, with a null character (/0) at the end.

Char greetings[6]={'H','E','L','L','O','/0’}

The above string hello is terminated with /0 (null terminating

character).

Thus a null-terminated string contains the characters that comprise

the string followed by a null. null character is used to mark the end

of a character string.

https://www.google.com/url?sa=t&source=web&rct=j&url=http://www.cs.ecu.edu/karl/2530/spr17/Notes/C/String/nullterm.html&ved=2ahUKEwjmxIqDwfzoAhWtzTgGHTZEAOgQFjAJegQIBRAB&usg=AOvVaw2Uz6RXXv8ZYDvPNOPlJX4E&cshid=1587575171058
https://www.google.com/url?sa=t&source=web&rct=j&url=http://www.cs.ecu.edu/karl/2530/spr17/Notes/C/String/nullterm.html&ved=2ahUKEwjmxIqDwfzoAhWtzTgGHTZEAOgQFjAJegQIBRAB&usg=AOvVaw2Uz6RXXv8ZYDvPNOPlJX4E&cshid=1587575171058

